

Ghost Controls Lock Mechanism Design Review 6

-

Senior Design Team 510

March 20, 2025

Sponsor and Advisor

Engineering Mentor Darryl Beadle Head Engineer Ghost Controls

<u>Academic Advisor</u> Shayne McConomy, Ph.D. Senior Design Professor

<u>Project Advisor</u> Simone Hruda, Ph.D. *Professor*

Team 510 - DR6

Team Introductions

Kayla Boudreaux Project Manager

Jacob Brock CAD Engineer Ernest Patton III Manufacturing Engineer

Dior Reece Test Engineer

Olivia Walton Design Engineer

Bradley Wiles Materials Engineer

Team 510 – DR6

Objective

The objective of this project is to design an innovative gate latch receiver mechanism that effectively addresses current customer acclaimed issues with misalignment and improper latching of Ghost Controls' current system.

Our goal is to develop a solution that ensures reliable engagement, enhanced durability, and ease of installation.

About Ghost Controls

Local to Tallahassee

- Automatic Gate Openers
- Variety of Applications
- Designed for Do-It-Yourself (DIY) Installation

Current Product – Zombie Lock

- Latch-Pin Style
- Weather Resistant
- Easy for DIY Install
- Improves Security for

Properties and Homes

Customer Issues

Latch Misalignment Due to Gate Sag
Main Cause of Customer Complaints

Project Focus - Receiver

Team 510 – DR6

Customer Needs

Performs on Swing Gates of Various Configurations

Design Concepts

Two Concepts are Better than One

- 1. Modification of Receiver - Guiding Ramp
- 2. Receiver Mounting Plate - Provides Vertical Adjustment

Prototyping - Ramp

Applications

Left-Hinged Gate

Right-Hinged Gate

Jacob Brock

Team 510 – DR6

Prototyping - Adjustment Plate

Team 510 – DR6

Current Adjustment Plate

3.5" Vertical Adjustment

Team 510 – DR6

Current Adjustment Plate

Team 510 - DR6

Current Adjustment Plate

1.5" of Horizontal Adjustment

CAD Assembly

FAMU-FSU College of Engineering

Jacob Brock

Physical Prototype

- 3D Printed Ramp and Adjustment Plate
- Current Market Reciever and Lock

Gate Testing – 3.5 Feet

Direct Comparison

Before MAS D

Olivia Walton

Gate Testing – 16 Feet

- Successful Guidance Up Ramp
- Similar Scuffing and Deflection Noticed

Gate Testing – 16 Feet

- Forced Bounce to Mimic Extreme Conditions
- Locking Remains Successful

Drawings - Adjustment Plate

Team 510 - DR6

Drawings - Ramp

Olivia Walton

Material Selection

Properties	Aluminum (Al 6061)	Steel (Mild Steel 1018)	3D Printed Plastic (PLA)
Density (g/cm^3)	2.7	7.85	1.0 - 1.4
Yield Strength (MPa)	293 - 300	370 - 440	40 - 60
Ultimate Tensile Strength (MPa)	313 - 320	450 – 500	50 – 70
Elastic Modulus (GPa)	68 – 72	200 – 210	2 – 5
Machinability	Excellent	Good	Poor
Weight	1/3 of Steel	1 (Reference)	1/5 of Steel

Material Selection – Ashby Chart

Material Selection – Ashby Chart

Team 510 - VDR2

Material Selection

AL 6061

- Natural Corrosion
 - Resistance
- Lightweight
- Cost Effective
- Environmentally Friendly

Ramp Material

Bradley Wiles

Adjustment Plate Material

Manufacturing - Cuts

Surface/Rough Cuts: Carbide Bits

Notch: Steel Side Cutter

Facing/Finishing Cuts: Carbide Bits

Ernest Patton

Manufacturing - Cuts

Water Jet

Ernest Patton

Manufacturing - Holes

Team 510 – DR6

Manufacturing - Welds

ER 4043 Al Filler

Manufacturing - Ramp

Manufacturing – Adjustment Plate

Manufacturing - Hardware

Adjustment Plate to Gate Post

From Original ZombieLock
Lag Bolts

Manufacturing - Hardware

Receiver to Ramp

- 1/4"-20
- 1/2" in length
- Countersunk
- Black

Manufacturing - Hardware

Receiver and Ramp to Plate

- Size 3/8"-16
- 1 inch in length
- Black
- Rubber end caps

Manufacturing – Powder Coating

Increased Durability

Improved Corrosion Resistance Aesthetic Appeal with Other Ghost Controls Products

Increased Heat Resistance

Dior Reece

Team 510 – DR6

Dior Reece

FEA – Adjustment Plate

(3)

- 1. Mesh Quality Plot
- 2. Mesh with Added Forces
 - 300 lbf
- 3. von Mises Stress

Max Stress: 1.203 psi

Min Stress: 6.893e-16 psi

Yield Strength: 3.999e04 psi

FEA – Adjustment Plate Results

- Max stress is in the center of an elliptical tab
- Similar results except for last slot
- Stress around slotted mounting holes is small compared to elliptical tabs

FEA – Ramp

1. Mesh with Added Forces

- 300 lbf
- 2. von Mises Stress

Max Stress: 4.266 psi

Min Stress: 5.269e-13 psi

Yield Strength: 3.999e03 psi

Dior Reece

(1)

(2)

Dior Reece

FEA – Ramp Results

- Max stress is under stress support lip
 - Deals the most with the weight of the

gate

- Extra support will be given from receiver
- 2. Stress around mounting

holes

Test Product on Gates

Dior Reece

Questions?

Dior Reece